年間指導計画表

教科・科目	理科・物理 -	単 位 数	5単位
7X14 14 D		学科•学年•学級	3年理系物理選択

1 学習の到達目標等

学習の到達目標	物理的な事物・現象に対する探究心を高めるために、演示実験、生徒実験を多く行い、物理学的に探究する能力と態度を育てる。また、講義を通して、物理学の基本的な概念や原理・法則の理解を深め、科学的な自然観を育成する。 具体的には、力学、電磁気学、熱力学、原子物理を学習し知識や科学的考察力の定着・涵養を目標とする。
使用教科書・副教材等	教科書:高等学校 物理(第一学習社) 問題集:セミナー物理(第一学習社) 物理重要問題集 (数研出版) チェック&演習 物理(数研出版)

2 評価の観点等

観点	趣旨	評価方法	配分
a. 関心・意欲・態度	各テーマについて興味・関心を持って取り組んでいるか。 授業・実験・観察に意欲的に取り組み、より深く理解しよう と努めているか。	ノート プリント 定期 考 授 業態度	10%
b. 思考・判断・表現	物理現象について疑問を持ち、問題点を客観的に把握で きるか。またその問題点の解決方法が着想できるか。	ノート プリント 定期考査	20%
c. 技能	実験・観察の技能を習得しているか。その結果を表やグラフにしてわかりやすく表現し、かつ文章で表現できるか。	ノート プリント 実験レポート 定期考査	20%
d. 知識・理解	物理現象について基本的な概念や原理・法則を理解し、そ れを知識として身につけているか。	定期考査 プリント ノート	50%

3 学習計画

学 月 時数	В			学習のねらい	評価の観点			
	数	女	子自の行うが、	а	b	C	d	
前期前半(第1回)	4 5 6	50	オリエンテーション 1. カ学 ①円運動 ②単振動 ③万有引力 第1回考査	●円運動をする物体に働く力について理解すること。 ・等速円運動の速度、周期、角速度、向心加速度及び向心力について理解すること。 ・慣性力である遠心力を理解すること。 ●単振動をする物体に働く力などについて理解すること。 ・単振動と等速円運動を関連付けて理解すること。 ・単振動をする物体の位置、速度、加速度の表し方、単振動をする物体の位置、速度、加速度の表し方、単振動をする物体にははたらく復元力について理解すること。 ・ばね振り子と単振り子について理解すること。 ●万有引力の法則について理解すること。 ・万有引力の位置エネルギーについて宇宙速度などを理解すること。	0 0	0	0 0	0 0
	【第1回办证据专注】							

【第1回の評価方法】 第1回考査,提出物(実験レポートを含む),授業態度を総合的に評価する。

前期後半(第2回)	6 7 8 9	40	2. 熱力学 ①気体の分子運動②気体の状態変化	●気体の内部エネルギーについて、気体の分子運動と関連付けて理解すること。 ・理想気体について、内部エネルギーが絶対温度に比例することを理解すること。 ●気体の状態変化における熱、仕事及び内部エネルギーの関係を理解すること。 ・等圧変化(定圧変化)などの気体の状態変化において、内部エネルギーを含めたエネルギー保存の法則として熱力学第一法	0 0			0 0
			3. 電場と電位 ①静電気	則が成り立つことを理解すること。 ●電荷が相互に及ぼし合う力や電場の表し方を理解すること。 ・電荷が相互に及ぼし合う力、電気量の保存、電界の性質、電気力線、静電誘導を理解すること。		0	0	
			②電場と電位	●電場と電位の関係について理解すること。 ・電荷の移動と仕事の関係、電場と電位の関係、等電位線を実験を用いて理解すること。			0	
			第2回考査					
			評価方法】 査, 提出物(実験レポートを	· 含む), 授業態度を総合的に評価する。				
	10 11 12	50	③コンデンサー 	●コンデンサーの性質を理解すること。 ・コンデンサーの充電と放電、電気容量、空気中に置かれた平行板コンデンサーなどの基本的な性質を理解する。 ・コンデンサーの接続における合成容量、電気容量と誘電体との関係を理解すること。	0		0	0
— — — — — — — —			④電気回路	●電気回路について理解すること。 ・キルヒホッフの法則,抵抗率の温度変化,電池の起電力と内部抵抗,ホイートストンブリッジ,電球の電流特性などを理解すること。 ・半導体のpn接合の特性,電池の起電力と内部抵抗の測定,電球やダイオードの電流特性,ホイートストンブリッジによる抵抗値についてにつ	0			0
期前			4. 磁場と電流 1 電流がつくる磁場	いて理解すること。 ●電流がつくる磁場の様子を理解すること。 ・直線電流、円形電流、ソレノイドによる磁場を理解すること。	0			
半(第				●電流が磁場から受ける力について理解すること。 ・電流が磁場から受ける力を表す式を扱い、ローレンツ力について理解し、荷電粒子の運動について理解すること。		0		
3 □			②電流が磁場から受ける力	●電磁誘導と交流について、観察、実験を通して現象や法則を理解すること。 ・コイルを貫く磁束の変化、導線が磁束を横切るときに生じる誘	0		0	
)			③電磁誘導と交流	導起電力, 自己誘導, 相互誘導, 交流発電機の仕組みを理解すること。 ・コンデンサーやコイルのリアクタンス, 交流回路のインピーダンスを理解すること。		0		
			④電磁波	●電磁波の性質とその利用について理解すること。 ・電磁波の基本的な性質、電波の利用、電気振動や電磁波の発生を理解すること。				0
	T to to		第3回考查					
	【第3回の評価方法】 第3回考査, 提出物(実験レポートを含む), 授業態度を総合的に評価する。							
	1 2 3	35	5. 原子 ①電子	●電子の電荷と質量について理解すること。 ・電子の比電荷、電気素量、真空放電を理解すること。 ●電子の粒子性と波動性について理解すること。	0		0	0
後期			②粒子性と波動性	・光電効果、光量子仮説、電子線回折、物質波を理解すること。 ●原子の構造及びスペクトルと電子のエネルギー準位の関係を理解すること。				0
後半(③原子の構造 ④原子核の構成	原子の構造、 α粒子の散乱実験原子が出す光のスペクトルと電子のエネルギー準位の関係、ボーアの原子モデルを理解すること。 ●原子核の構成、原子核の崩壊、核反応について理解すること。	0			0
第 4			受験子校の構成 ⑤素粒子	・原子核の構成,原子核の崩壊,半減期,核分裂,核融合,原子核反応,質量とエネルギーの等価性を理解すること。 ●素粒子の存在について理解すること。		0		0
<u> </u>				・素粒子の存在と基本的な力などについて触れる。				0
			L 評価方法】 、ト, 提出物(実験レポートを	」 含む),授業態度を総合的に評価する。				
	 【年間の学習状況の評価方法】 前期前半から後期後半までの評価を総合し、年間の評価とする。							